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Higher-order moments and the maximum entropy inference: 
the thermodynamic limit approach 

W Jaworskit 
Institute of Physics, Nicholas Copernicus University, Grudziadzka 5,87-100 Torut?, Poland 

Received 17 March 1986 

Abstract. According to Jaynes, statistical mechanics can be interpreted as a special type 
of statistical inference based on the principle of maximum entropy. The result of such an 
inference depends on the available information about a given physical system, but the 
principle itself does not decide what kind of information is essential and what is not. The 
well known Gibbs canonical state results from the principle when the statistical mean value 
of energy is supposed to be known. In our paper the maximum entropy inference employing 
higher-order moments of energy is examined from the point of view of the thermodynamic 
limit. It  is shown that the contribution to the total entropy, arising from the extra information 
corresponding to the higher-order moments, is o( N ) ,  when N + 5, N /  V = constant ( N  is 
the number of particles and V is the volume). Consequently, from a purely thermodynamic 
point of view, this extra information is non-essential and can be neglected in the maximum 
entropy procedure. These conclusions also characterise the maximum entropy inference 
employing higher-order moments of (almost) arbitrary extensive quantities. One can say 
that the maximum entropy inference has a certain 'stability' property with respect to 
information corresponding to higher-order moments of extensive physical quantities. 

1. Introduction 

The fundamental statistical mechanical distributions-the so-called Gibbs distribu- 
tions-have a non-trivial common property: subject to certain constraints they maximise 
a functional known in statistical mechanics as entropy, and in information theory, 
probability theory and mathematical statistics as information. This fact enabled Jaynes 
to formulate a general principle of maximum entropy [ 1-51, as a criterion to single out 
these probability distributions and density operators that are best suited for a macro- 
scopic description of physical systems. Statistical mechanics was interpreted as a 
special type of statistical inference based on this principle. 

The result of the maximum entropy procedure is determined by the constraints that 
always accompany it. These constraints express available information about the con- 
sidered physical system. In practice they depend on the actual experimental situation. 
In the case of thermodynamic equilibrium, statistical properties of energy, or of energy 
and the number of particles, are constrained in the well known manner and the Gibbs 
canonical, microcanonical or great canonical distributions are obtained [6-81. 

Constraints that are most frequently applied in maximum entropy procedures are 
of the mean value type. They correspond to the situation when statistical mean values 
of some physical quantities are known. Constraints of this type yield probability 
distributions (density operators) of a convenient analytical form, which generalises 
the form of the canonical distribution. Such distributions are frequently applied in 
statistical mechanics (see, e.g. [6, 8-14, 351). 

t Present address: Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6. 
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916 W Jaworski 

A straightforward generalisation of the mean value constraints is obtained when 
not only mean values but also statistical moments of higher order of some physical 
quantities are taken into account [ 15,161. Maximum entropy distributions correspond- 
ing to such constraints can also be found in statistical mechanical applications, cf, 
e.g., [ 17-21, 351. These applications, however, are, generally speaking, different from 
applications of the distributions described previously. Distributions maximising 
entropy, subject to constraints for only mean values, are used mainly to describe 
equilibrium or non-equilibrium states of a physical system as a whole (cf Gibbs 
distributions). On the contrary, probability distributions maximising entropy under 
conditions for higher-order moments are applied mainly to approximate ‘exact’ proba- 
bility distributions for one or a few specified random variables, when a finite number 
of their moments is known (the problem of moments [17]). 

Any available information about a physical system can be put in the form of some 
constraints and  used in the maximum entropy inference. It depends on the available 
information whether results of this inference are correct or incorrect. When they are 
correct, the available information is sufficiently complete. When they are not, some 
important information is missing. The principle of maximum entropy does not a priori 
decide what information is actually essential and  worth seeking and  what is practically 
superfluous. This can be decided only a posteriori. 

In phenomenological thermodynamics a thermodynamic equilibrium state is 
uniquely determined by the values of energy U, volume V, the number of particles N,  
and (maybe) some other extensive quantities X I , .  . . , X , .  From the thermodynamic 
point of view, information I corresponding to the specified values of 
U, V, N, X I , .  . . , X ,  is essential and  complete. In statistical mechanics the particular 
values of U, V, N, X I , .  . . , X ,  are interpreted rather as mean values. From the point 
of view of the Jaynes principle of maximum entropy, information I is also essential 
and complete enough to give predictions that agree with phenomenological thermody- 
namics (and with experiment). This fact is crucial. If this were not so, the principle 
of maximum entropy would be complete nonsense. So it now becomes clear that the 
question of what information is essential for the maximum entropy inference, and 
what is superfluous, is interesting and important not only from a purely practical point 
of view, but also from a theoretical one. This question concerns the principle of 
maximum entropy in itself. 

Let us now analyse the case when statistical mean values of some physical quantities 
A , ,  . . . , A, are given, and  additionally some of their higher-order moments (generally 
mixed) are known. In such a case the set of available data D is of the form D = D, U D2,  
where D1 = {the mean values}, D2 = {the higher-order moments}. D, can be viewed as 
a basic and D2 as a supplementary data set. Both D, and D2 constrain the probability 
distribution of A I , .  . . , A,. Information contained in D = D, U D2 is obviously more 
complete than information contained in D1.  Additional information contained in D2 
affects results of the maximum entropy inference. The problem is: in what manner 
and  to what extent does it actually affect these results? In the present paper we study 
this problem from the point of view of the thermodynamic limit. 

We d o  not consider the most general case, but only a special one, when statistical 
moments of the Hamiltonian of a physical system are givent. Our approach, however, 
can be formally extended to more general situations as well (see § 5 ) .  

Some properties of maximum entropy distributions corresponding to this situation have been already 
studied by the author in [22, 231, but not in this context. 
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2. The maximum entropy formalism 

In this section we give a concise introduction to the maximum entropy formalism in 
classical and quantum mechanics. More complete treatments can be found, e.g., in 
[6-91. 

We consider a physical system of ~ < C O  degrees of freedom. In  the classical 
description r denotes its phase space (of dimension 2f). In the quantum one 2 is 
the corresponding Hilbert space. A state, an observable, the mean value and the 
entropy are defined as follows. 

A state 

non-negative function p, such that I p dT = 1. 

operator p acting in 2, such that Tr p = 1. 

An observable 

i.e. A : T + R .  

( i )  In the classical case: a state is an  arbitrary probability density on r, i.e. a 

(ii) In the quantum one: it is an arbitrary density operator, i.e. a non-negative 

( i )  In the classical case it is a real-valued (measurable) function A defined on r, 

( i i )  In the quantum one it is a self-adjoint operator acting in 2. 

The statistical meaH value of an observable A in a state p is a real number ( A ) p :  

(2.1) 
in the classical case 

in the quantum case. 

The entropy (information) of a state p is given by 

S, = -k(ln p ) ,  

where k is the Boltzmann constant?. Throughout this paper we put k = 1, to simplify 
formulae. 

Now let A , ,  . . . , A,, be some observables and let U , ,  . . . , U,, denote their mean values 
in a state po. Let I be a trivial observable. 

( i)  In the classical case it is a function such that I (  y )  = 1 for all y E r. 
(ii) In the quantum one it is the identity operator. 

We assume that the observables I ,  A , ,  . . . , A,, are linearly independent. 
Suppose that po is not explicitly known and that the mean values U , ,  , . . , U, 

constitute the only available information about it. So po belongs to the macrostate, 
which is defined as the set of all these states that are compatible with this information: 

@ = { p l ( A , ) p = U , ,  i = 1 , 2  , . . . ,  n ) .  (2.3) 

This is all we know. It is clear that this knowledge becomes, in general, quite insufficient 
to infer anything about observables that are not linear combinations of I ,  A , ,  . . . , A,,. 
Any such inference must be based on some additional postulates. 

f Generally speaking, information I, is defined by I ,  = -a(ln p ) , ,  where a is a constant depending on the 
information unit chosen. 
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The principle of maximum entropy constitutes such a postulate. According to it, a 
state p* E (3 such that 

S, .  = max So (2.4) 
P E @  

is best suited for any statistical inference based on the available data (i.e. U , ,  . . . , U,,). 
For instance, the statistical mean value of an  observable X is estimated by the expression 

w,*. (2.5) 

When certain regularity conditions [24,25] are satisfied, p* exists, is unique, and 
has the form 

p* = ~ ' ( a , , .  . . , a,,) exp( - .,A.> 
i = l  

(2.6) 

where 

and the parameters a,, . . . , a,, are determined by the equations 

U, = -a In nlaa, i =  1 , 2 , .  . . , n (2.8) 

(when the variational method is used to find p * ,  then a, ,  . . . , a,  appear to be Lagrange 
multipliers). The entropy of the state p * ,  also called the entropy of the macrostate (3, 
is given by 

(2.9) 

When expressed as a function of U , ,  . . . , U,,, it satisfies 

ai = aS/a U, i = 1 , 2  , . . . ,  n. (2.10) 

In the particular case when A ,  = A, A2 = A', . . . , A ,  = A", the mean values 
U , ,  . . . , U,, are statistical moments of the first, second,. . . , nth order of the observable 
A. (Of course, in this case central moments, or cumulants can be used equally well.) 
When A =  H is the Hamiltonian of our  system, then the maximum entropy state p* 
has the form 

p* = R-'(a1,  . . . , a,) exp ( aiHi). (2.11) 

This is a simple generalisation of the well known Gibbs canonical distribution. Now 
we proceed to investigate this generalisation. 

3. The problem of the thermodynamic limit 

We shall consider quite general classical and  quantum systems composed of identical 
particles. N will denote the number of particles in a system, V ,  is its volume and  H N  
the Hamiltonian. 
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We are going to investigate a generalised Gibbs state of the form 

in the thermodynamic limit 

N + m  vN+m v N /  N = U = constant. (3.2) 

The state p N  depends on the parameters a , N , .  . . , anN.  In order to pass to the 
thermodynamic limit it is necessary first to decide whether and how these parameters 
depend on N. According to 0 2, pN is the maximum entropy state corresponding to 
the macrostate 

@ N  ={P ’E  9,  HA)^ = q k , j =  1,2, .  . . , n }  (3.3) 

where Y N  denotes the set of all states of the N-particle system and UI N ,  . . . , UnN are 
the given statistical moments of H N .  It is clear that these moments must depend on 
N. From phenomenological thermodynamics it is well known that energy is an extensive 
quantity. Therefore it is reasonable to assume that 

U,, = N.’U, + O( NI) j = 1,2, . . . , n (3.4) 

where the symbol a N  = 0 ( b N )  means that lim N+s a N / b N  = 0 and U,,. . . , U, are con- 
stants: 

U/ = N - r i r  lim N-’U,N. (3.5) 

The parameters 
given implicitly by (2.8), i.e. 

. . , anN are functions of U I N , .  . . , U n N .  These functions are 

(3.6) 

When we know the dependence of the moments on N, then, in principle, by solving 
these equations the dependence of a, N ,  . . . , anN on N can be determined. In practice, 
however, this programme is unrealisable. 

The dependence of a I N , .  . . , anN on N can be determined using the following 
argument. Phenomenological thermodynamics suggests that the entropy S N  of the 
state p N  satisfies 

S N =  Ns+o(N) (3.7) 

where s is a constant: 

(extensivity). Now, using relations (2.10) we have 

So taking into account (3.4) and (3.7) we can expect that 

1 
cy jN =- N,- l  (Pj + o ( l ) )  

(3.9) 

(3.10) 
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where PJ ( j  = 1 , .  . . , n )  are constants. In our calculation we shall simply put 

Q J N  =NJ-' P J  pJ = constant ( j  = 1, .  . . , n )  (3.1 1) 

and calculate the thermodynamic limit for 

(3.12) 

(3.13) 

and investigate some asymptotic properties of the probability distribution for the 
energy. The results will show that our substitution (3.11) is correct, i.e. it is in agreement 
with the assumptions (3 .4)  and (3.7). 

4. The calculation 

In the case of a classical ideal gas the thermodynamic limit for the states p N  (3 .12)  
can be calculated rigorously. This calculation can be found in [23]. Here we are 
concerned with quite general classical and quantum systems composed of identical 
particles. It turns out that the method used in [23] can be formally generalised to this 
case. Our present calculation is a formal one. It becomes rigorous in the case of the 
ideal gast. 

Let us introduce the following auxiliary function: 

in the classical case 

(4.1 1 
in the quantum case 

where v = 0,1,. . . ; t E R, i =a. We have 

where x N  denotes the characteristic function of the observable HN/ N.  So the thermody- 
namic limit problem is equivalent to the problem of finding an asymptotic form for 
J v N , ,  when N + m  (V,/N=u=constant) .  

t We hope that in a general case the thermodynamic limit for (3.12) can also be calculated rigorously using 
the approximating Hamiltonian method [26-281, under the assumption that the thermodynamic limit for 
the canonical distribution exists. We know that this idea works at least in the case n = 2 ,  cf [21], lemma 
3.1 and 3.2. 
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Let gN ( E ,  N u )  denote the density of states for our system with energy E and volume 
VN = NU, i.e. 

6( HN - E)  dTN =- a I drN 

the number of linearly independent 

in the classical case 

(4.3) 
a E  H , S E  

gN(E, N u )  = 

(solutions of the equation HNq = Eq in the quantum case. 

For simplicity we shall assume that the ground-state energy is zero?. Using the density 
of states, J v N ,  can be written as follows: 

g,(E, Nu)E” exp($-Jl s) d E  in the classical case 

(4.4) 
P E’ 
il.) NI-! in the quantum case 

where {EkN}y=)=O is the spectrum of the operator HN. It is well known that, when 
N + 00, VN/ N = U = constant, this spectrum is usually getting more and more dense. 
We shall use the continuous spectrum approximation, i.e. the sum ZF=o in (4.4) will 
be replaced by the integral dE. We assume that this replacement does not affect 
thermodynamic limit results. When the continuous spectrum approximation is applied, 
the quantum formula in (4.4) takes the same form as the classical one. Finally we can 
write 

Let us now consider, for a moment, the microcanonical distribution (density 

(4.6) 

operator) i E N .  For E 2 0, and A > 0 we define it by 

;EN = ~ ; I ( E ,  N U ) G ~ ( H ~  - E )  

where a4 denotes the function 

and 

I in the classical case 
E N ( E ,  N u ) =  (4.8) 

64(HN - E )  drN 

in the quantum case. 

Using the density of states gN(E,  No) and-in the quantum case-the continuous 
spectrum approximation, we obtain 

E+;\ - 
gN(E’, NU) dE‘z2Ag,(E, NU). (4.9) I€-, S N ( E ,  N u ) =  

The entropy S g (  E, N u )  of the microcanonical state (4.6) is given by 

Sk ( E, Nu ) = In 5 N ( E, Nu ) t In 2 6  + In gN ( E, NU ) . (4.10) 

t We also assume, in order to simplify the notation, that g,v is a function of E and V ,  only. In general, 
it may depend on some other parameters characterising the system, i.e. electric or magnetic fields. 
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We will assume that the thermodynamic limit for the microcanonical distribution exists, 
i.e. 

lim N - ' s $ ( N u ,  NU) = so(u,  U )  (4.11) 

(independently of A ) .  I f  so, then taking into account (4.9) and (4.10) we can expect that 

N-,X 

In g, (Nu ,  Nu) = Nso( U, U )  + qN (U, U )  

qN(U, 0) = o( N )  N+CO. (4.12) 

Substituting now (4.12) into (4.5), we obtain 

J v N r  - - N"" lom.' exp[ N (  so(x, U)- j =  I pJx' exp(itx+q,(x, U)) dx. (4.13) 

Under certain regularity conditions for so and q N ,  the well known Laplace method 
(cf, e.g., [29-311) can be used to evaluate asymptotically the integral (4.13). Assuming 
these regularity conditions to be satisfied, we obtain 

where A(Nk) > 0, and x, , . . . , x, 2 0 denote all these points, which maximise the function 
f (x )  = so(x, U )  -E:=, @,XI. Note that pn must be positive to ensure convergence of 
expressions (4.1) and that the entropy so(x, U )  is theoretically equal to the entropy 
defined in phenomenological thermodynamics. It follows that f (x) assumes its absolute 
maximum in the open interval (0, CO), so x I ,  . . . , x, > 0. 

ROOJ The function so(x, U )  is a convex function of x, i.e. a2so/ax2 zs 0. So for x1 , x2 > 0, 
we have s0(x2, u ) S s o ( x I ,  u)+(xz-xl)(ds0/dx)(x, ,  U )  = s o ( x I ,  u )+ (x2-x , ) /T (x l ,  U), 
where T is the temperature. Since limx+m T(x, U )  =a, the function f (x )  = 
so(x, U )  - X y = l  pJxJ must remain bounded above when x + CO (p,, > 0). For x + +0, we 
have dsO/ax = 1/ T + CO (zero is the lower bound for the energy), so that f (x )  is increasing 
for sufficiently small x > 0. 

A typical behaviour of the numbers A%) is such that In A S )  = o ( N ) .  

maximum at a unique point x l ,  which solves the equation 
Using the convexity of so, it is easy to see that for n = 1,2,f(x)  assumes its absolute 

PI +2P2XI = (asO/ax)(xl, U). (4.15) 

For n b 3, the number of points maximising f (x) can be greater than one. The example 
of the ideal gas (so(x, U )  = In x + In U +constant) shows this explicitly [23]. 

Formula (4.14) yields the following conclusions: 

m 

j = 1,2,  . . . 

(4.16) 

(4.17) 
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where 

(4.18) 

n m 

s = Iim N - ’ s ~  = ++ C pJu, = C akso(xk, U )  (4.19) 
N-CC J = 1  k = l  

m 

Iim X N ( f ) =  ak exp(itxk). 
N - m  k = l  

(4.20) 

We assumed (when m > 1 )  that the limits (4.18) exist. It is always so in the case 
of the ideal gas [23]. This case also shows explicitly that more than one of the numbers 
ak can be non-zero. Note that ak, k = 1 , .  . . , m, form a probability distribution, since 
Z k = ,  ak = 1 and ak 2 0 .  Formula (4.20) gives an  interpretation to this probability 
distribution. It means that the probability distributions PN of the observables H N /  N 
(energy per particle) converge weakly to the probability distribution P concentrated 
at the points x, ,  . . . , x, with P ( { x k } )  = ak. Weak convergence (cf, e.g., [32,33]) means 
that PN(A)  + N+r P ( A )  for any (Borel) set A c E4 such that P ( a A )  = 0, where aA denotes 
the boundary of A. Formula (4.17) for the moments of H N / N  agrees with the form 
of the asymptotic distribution P. 

m 

The convexity of the entropy so implies the following inequality: 

(4.21) 

In the case when at least two of the probabilities ak are non-zero, and  when so is 
strictly convex (no phase transitions), this inequality is strict. 

In the case when only one of the probabilities a , ,  . . , a, is non-zero (let a ,  = l ) ,  
in particular when f assumes its absolute maximum at a unique point x , ,  equations 
(4.17)-(4.20) are identical to those obtained using the ordinary canonical distribution 
(with temperature T = [(aso/ax)(x,, U)]-’) or microcanonical (with energy E N  = N x , ) .  
In this case let us consider fluctuations of energy. It is easy to verify that for the 
generalised canonical state p N  (3.12) we have 

((HN - ( H N ) p b ) * ) p y  = d Z I n  zN/ap:*  (4.22) 
So when a2t,b/ap: exists, we can expect that 

lim N - ‘ ( ( H ,  -(HNjp,)’jp\ =a2t,b/ap:. (4.23) 
N - X  

The derivative a’+/ap: can be evaluated using (4.16): 

lim N - ’ ( ( H ,  - ( H N ) p , ) 2 ) p ,  = p, j ( j -  l)x:-’+ T-’c;’ ) - I  (4.24) 
N -3c 

where T = [(aso/ax)(x,, U)]-’ is the temperature and c, = T(dso/dT) ,  is the specific 
heat at constant volume?. For n = 1 formula (4.24) is the well known formula describing 
fluctuations in the canonical ensemble. For n = 2, p2 > 0 and  the fluctuation (4.24) is 
always strictly smaller than it would be in the case of the corresponding canonical 
distribution (i.e. with temperature T = ((aso/ax)(x,, U))..’). It remains finite even in the 
case of a phase transition such that c,. + 00. For n L 3 the fluctuation can be as well 
smaller as bigger than for the corresponding canonical distribution, and  it can become 
infinite even when c, <CO (cf also [23]). 

t Also constant other parameters characterising the system, cf footnote on p 921 
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The derivatives CkN = ( -a/ap,)k In Z N ( / 3 , ,  . . . , pn) are known as cumulants of the 
observable H N .  The first-order cumulant is simply the mean value of H N ,  C,, and 
C3N are the central statistical moments of H N  and, in general, the kth-order cumulant 
C,, can be expressed as a (non-linear) combination of the ordinary moments 
U1 &,, . . . , U,, of HN [33]. In probability theory it is shown that cumulants are additive 
over independent random variables. In our case, when the derivatives ( -a/ap,),  exist, 
we can expect that 

and this means that cumulants are extensive quantities. The generalised canonical 
state p N  (3.12) has been defined as maximising the entropy under constraints for the 
moments U I N , .  . . , VuN of H N .  These moments determine our parameters P I , .  . . , P,,: 
- a  In &lap, = j = 1 , .  . . , n. When in formulae (4.17)-(4.20) only one of 
the probabilities a , ,  . . . , a,,, is non-zero, the limit moments uJ = limN-.= L J N /  N J  cannot 
be used to determine P I , .  . . , pn uniquely, since 

(4.26) 

However the limit cumulant densities c , , .  . . , c, can serve this purpose. (This can be 
verified explicitly using ,4.16).) The connection between the maximum entropy pro- 
cedure and passing to t'?e thermodynamic limit (cf ( 3 . 1 1 ) )  now becomes more clear. 

uJ = -a$/ap, = U: j = 1 ,  . . . , n. 

5. Discussion of the results and conclusions 

Any available information about a macroscopic physical system is never complete 
enough to determine uniquely its microscopic state. Among all these states that are 
compatible with the given information there is one which has maximum entropy. The 
principle of maximum entropy postulates that this state is best suited to make any 
statistical inference concerning the system. Using the principle of maximum entropy, 
the properties of a system in thermal equilibrium can be predicted correctly when the 
mean energy is known. Our problem was to study the effect of information correspond- 
ing to higher-order moments of energy on the results of the maximum entropy inference. 
We investigated the thermodynamic limit for the generalised canonical distribution 
(3.12),  which has maximum entropy subject to constraints exactly for the moments of 
the energy. 

It appears that two cases are possible. 
( i )  In the thermodynamic limit the energy per particle N - ' H h !  becomes a discrete 

random variable which can assume at least two different values with non-zero prob- 
abilities (cf (4.18) and (4.20)). Inequality (4.21) shows that in this, and only in this 
case, the limit entropy density s = IimN-= N - ' S N  is strictly smaller than it would be 
for the ordinary canonical distribution?. So only in this case the additional information 
corresponding to the higher-order moments is large enough to be able to decrease the 
limit entropy density s. It must be stressed at the same time that the case is artificial 
and does not correspond to any observable state of a real macroscopic system. 

i In equations (4.19) and (4.21) the entropy s is expressed in terms of the entropy so, which is obtained in 
the thermodynamic limit from the microcanonical distribution. In our discussion we make a standard 
assumption that the canonical and the microcanonical distributions are equivalent from the point of view 
of the thermodynamic limit. 
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(ii) In the thermodynamic limit the energy per particle N - ’ H N  has a trivial 
probability distribution concentrated at a single point. In this case the limit entropy 
density s = limN+uc N - ’ S N  is equal to the limit entropy density calculated using the 
ordinary canonical distribution (see footnote on p 924), i.e. neglecting the higher-order 
moments. This means that the contribution to the entropy S ,  arising from the additional 
information corresponding to the higher-order moments is of the order o ( N )  when 
N + a .  

In phenomenological thermodynamics the equation that expresses the entropy as 
a function of extensive parameters (energy, volume,. . .), or the entropy density as a 
function of the densities of the extensive parameters, is known as the fundamental 
equation (cf, e.g., [34]). Knowledge of this equation enables one to calculate any 
thermodynamic property of the system under consideration. The fact that the gen- 
eralised canonical distribution (3.12) and the ordinary canonical distribution yield the 
same fundamental equation is fully satisfactory from the point of view of the informa- 
tion theory approach to thermodynamics and it confirms the reasonableness of the 
principle of maximum entropy. (It  would be difficult to agree that the fundamental 
equation, and  consequently all the thermodynamic properties, depend in some essential 
way on energy fluctuations.) 

So in (ii) the generalised canonical distribution yields the same thermodynamics 
as the ordinary one. However, the fluctuations, in particular the energy fluctuations, 
are different from those calculated on the grounds of the canonical distribution (cf 
(4.22)-(4.24)). This can be observed particularly well in the case of a phase transition 
such that ((H, - (H, ) ) ’ ) /  N + c o  for the canonical distribution, cf (4.24). Thus our 
results can also be interpreted as follows. When energy fluctuations differ from those 
calculated from the canonical distribution, the entropy change corresponding to this 
difference is of the order o(N), when N + CO. 

Finally consider the function $ ( P I , .  . . , P , )  = Iim,+= N - ’  In Z,(P,, . . . , &).  The 
derivative ck = ( - -~3 /ap , )~+  equals the limit density of the kth cumulant of energy, cf 
(4.25). The parameters P I , .  . . , Pn can be expressed as functions of c l , .  . . , c,. Then 
the limit entropy density s = $ + Z;I”=’ P,u{ also becomes a function of c I ,  . . . , c,. Since 
cumulants of energy are extensive (cf (4.25)), the equation s = s ( c I ,  . . . , c,, U )  seems 
a legitimate generalisation of the thermodynamic fundamental equation (remember 
that c l = u I ) .  But our result is that s ( u I , c 2 ,  . . . ,  c ~ , u ) = s o ( u I , u ) ,  where s = s  ( u , , u )  
is the ordinary fundamental equation. So, in fact, there is no generalisation-the 
entropy of a macroscopic system is independent of c2 ,  . . . , c,, i.e. of energy fluctuations, 
and the thermodynamic forces aslac, ,  . . . , a s / a c ,  vanish. This is in full agreement 
with the fact that thermodynamic equilibrium state can be realised both in a completely 
isolated system and in a system exchanging energy with its surroundings. 

We investigated a special case of the maximum entropy inference employing 
higher-order moments. However, it can easily be seen that the method used in Q 4 can 
be formally applied to some more general situations when statistical moments of some 
extensive physical quantities A I ,  . . . , Ak are given. (In such a case a ‘microcanonical’ 
distribution b ~ = g L ’ ( d ; P 1 , . . . , d k ,  N u ) S i \ ( A 1 - d l ) S ~ ( A z - d 2 )  . . .  S i \ ( A k - d ~ ) ,  and a 
density of states g , ( d , ,  . . . , dk,  Nu) must be considered. It is necessary to assume 
that the thermodynamic limit for p N  exists.) The results will be analogous to those 
derived above. In the analogue of ( i i )  we will obtain the following. The contribution 
to the entropy S ,  arising from the extra information corresponding to the higher-order 
moments is of the order o(N) when N + CO, NI V = v = constant. The entropy density s 
is, in the thermodynamic limit, independent of fluctuations (cumulant densities of higher 

0 
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order) of the quantities A,, . . . , A,; thermodynamic forces corresponding to thesepuctu- 
ations vanish. 

The main result of this paper is that from a purely thermodynamic point of view, 
the information corresponding to the higher-order moments of extensive physical 
quantities is not essential and  can be neglected in the maximum entropy procedure. 
This is, of course, not an unexpected result. Our work, however, is not a proof of a 
triviality. It can be viewed rather as a test of the maximum entropy formalism and, 
in fact, of the formula S, = -(In p), .  We showed that the maximum entropy inference 
has a certain ‘stability’ property with respect to information corresponding to higher- 
order moments of extensive quantities. This result is reasonable. It can serve as an  
argument in favour of the maximum entropy method in statistical physics. It also 
enables us to understand better why these methods are successful. 
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